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Abstract

We propose a method to efficiently equip the Segment
Anything Model (SAM) with the ability to generate regional
captions. SAM presents strong generalizability to segment
anything while is short for semantic understanding. By in-
troducing a lightweight query-based feature mixer, we align
the region-specific features with the embedding space of
language models for later caption generation. As the num-
ber of trainable parameters is small (typically in the order
of tens of millions), it costs less computation, less memory
usage, and less communication bandwidth, resulting in both
fast and scalable training. To address the scarcity problem
of regional caption data, we propose to first pre-train our
model on objection detection and segmentation tasks. We
call this step weak supervision pretraining since the pre-
training data only contains category names instead of full-
sentence descriptions. The weak supervision pretraining al-
lows us to leverage many publicly available object detec-
tion and segmentation datasets. We conduct extensive ex-
periments to demonstrate the superiority of our method and
validate each design choice. This work serves as a step-
ping stone towards scaling up regional captioning data and
sheds light on exploring efficient ways to augment SAM with
regional semantics. The project page, along with the asso-
ciated code, can be accessed via the following link.

1. Introduction

Teaching machines to understand the visual world with nat-
ural languages has been a long-standing problem in com-
puter vision [30, 74, 76]. Image captioning is one of the
topics that require the machine to perceive and describe im-
ages in human languages [34, 37]. With the wave of deep
learning [24, 39], enormous efforts [42, 43, 84, 96] have

†Work was done when the author interned at Microsoft.
∗Corresponding.

Figure 1. SCA (b) is a lightweight augmentation of SAM (a) with
the ability to generate regional captions. On top of SAM archi-
tecture, we add a pre-trained language model which is frozen, and
a lightweight hybrid feature mixture. Despite the small number
of trainable parameters, the region-specific features are learned to
align with the embedding space of the language model for regional
caption generation.

been devoted to pushing its frontier in terms of model archi-
tectures, training data, training techniques, etc. However,
much less work has been devoted to the regional caption-
ing [33, 56, 89, 104], in which models describe the regions
instead of the entire image.

Building an intelligent system that follows human intent
is an emerging research topic, as evidenced by the rapid
progress of large foundation models [7, 31, 65, 80, 99].
Major breakthroughs have been made in language model-
ing [7, 62, 78, 81], where the foundation language mod-
els are fine-tuned to follow the instructions of users with
both instruction supervision [62, 78] and human feed-
back [60, 81]. The idea is further developed in multi-
modal language model [53, 109], text-to-image genera-
tion [69, 71, 97], and interactive segmentation [35]. Seg-
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ment Anything Model (SAM) [35] is an interactive segmen-
tation system, that successfully scales the mask data to a
billion. Such data scale enables stronger generalizability in
segmentation given the visual prompts. However, the data
contain no semantic labels thus the model is incapable of
semantic understanding.

We propose a method to efficiently equip SAM with
the ability to generate regional captions. We marry SAM
with causal language models [7, 64, 80] by introducing a
lightweight hybrid feature mixture which stacks a text fea-
ture mixture on top of the SAM feature mixture. The hy-
brid feature mixture extracts regional features for down-
stream caption predictions via self- and cross-attention [82].
We solely optimize the text feature mixer and leave the
other network modules (i.e. SAM’s encoder, SAM feature
mixer, the language model) untouched. During training,
the region-specific features are aligned with the embedding
space of language models for later caption generation. As
the number of trainable parameters is small (typically in the
order of tens of millions), it costs less computation, less
memory usage, and less communication bandwidth, result-
ing in both fast and scaleable training. Fig. 1 provides a
system overview.

However, there is limited data available for training re-
gional captioning models [36, 98]. For example, One
commonly used dataset, Visual Genome (VG) [36] con-
tains up to 100K images. In contrast, SAM [35] used
a dataset that contains more than 11M images and 1B
masks. Inspired by the effective deployment of weak su-
pervision [44, 103, 111], we introduce a weak supervision
pretraining step to leverage the publicly available object de-
tection and segmentation datasets. Specifically, we pre-train
the text feature mixer on Objects365 [72] detection data and
COCO-Panoptic [50] segmentation data, which consist of
1.8M images. Finally, the text feature mixer is finetuned on
the VG regional captioning data.

We have conducted extensive experiments to demon-
strate the effectiveness of our method and validate each
design choice. Our method achieves state-of-the-art per-
formance on the VG [36] benchmark with 149.8 CIDEr-
D, 17.5 METEOR, and 31.4 SPICE. We believe this work
serves as a stepping stone towards scaling up regional cap-
tioning data [6, 35, 57] and sheds light on exploring ef-
ficient approaches to augment a segmentation model like
SAM with regional semantics.

2. Related Works
Object detections, segmentations, and interactive seg-
mentations. The field of object detection has evolved
from CNN-based methods [19, 23, 55, 55, 67, 68, 79]
to transformer-based models [8, 41, 54, 82, 102, 110].
The transformer architecture has shown versatility across
modalities, facilitating tasks like open-world detection [31,

65, 99, 100]. Similar architectural trends are observed in
segmentation tasks [11, 12, 26]. Recent works have also
integrated vision-language pre-training for open-world seg-
mentation [17, 22, 40, 48, 90, 94]. Interactive segmenta-
tion [25, 66, 70] is a sub-task with unique challenges that
can be tackled by transformer-based models like SAM [35].
This paper extends SAM to region-level understanding us-
ing additional tokens and transformer layers.
Image captioning and dense captioning. Image caption-
ing involves generating textual descriptions for images by
combining vision and language models [16, 18, 27, 31, 65,
77, 99]. Early methods employed CNN and LSTM [34],
while recent works leverage transformers [1, 13, 15, 43, 84]
and large language models [7, 62, 80, 81]. These mod-
els can follow user instructions, demonstrating abilities like
visual reasoning and question answering. Dense caption-
ing [33, 36, 45, 56, 73, 89, 91, 95] extends image captioning
to region-level, combining detection with generation. De-
spite its simultaneous development with image captioning,
its evaluation metrics improvement has been slow due to the
compounded difficulty of localization and generation. This
work assumes localization proposals as given inputs and fo-
cuses on region captioning.
Scaling region understanding systems. Tremendous
progress has been made in natural language processing
and vision domains by training large models on mas-
sive datasets, with scaling laws illustrating the relation-
ship between computational budgets, data size, and perfor-
mance [1, 3, 13, 29, 31, 58, 65, 99]. This trend is also ob-
served in region-level understanding systems, where weak-
supervision methods like self-training and proxy training
losses are used to scale up data [4, 44, 92, 93, 101, 105,
108]. [57] and [35] show the importance of scaling in
vision tasks by reaching the scale of billions of samples.
However, region-level understanding is still underexplored
due to the limited data scale. The current dataset, Visual
Genome [36], is small, leading to poor alignment and gen-
eralizability. This work aims to explore the scaling property
in generative region-level understanding using weak super-
vision from detection [38, 50, 72, 85] and leaves image cap-
tioning supervision [10, 59, 75] and self-training [42, 57]
for future exploration.
Concurrent works. Recent progress in Large Language
Model (LLM) and interactive segmentation has spurred sev-
eral concurrent works in region-level understanding. With-
out training, Caption Anything [86] utilizes SAM and image
captioning models to predict text descriptions based on the
cropped regions, with style adjustments by ChatGPT [60].
Other works train with existing data; GPT4ROI [104] ex-
tends Visual LLM [53] to process region prompts, while
Region-BLIP [107] employs BLIP2’s feature mixer [43]
and trains on multiple tasks. Works like Kosmos-2 [63]
and All-Seeing [87] utilize similar architectures but differ-
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Figure 2. The model architecture. The model consists of three parts including an image encoder, a feature mixer, and decoder heads for
masks or text. The key ingredient of the model is the text feature mixer, which is a lightweight bidirectional transformer [82]. We stack
it over the one from SAM and reuse its tokens. By solely optimizing the additional mixer, we align the region-specific features with the
embedding space of language models. The training is both fast and scalable thanks to the limited amount of optimizable parameters.

ent dataset construction paths, demonstrating strong per-
formance on various region-level tasks. Despite the rapid
evolution of this field, this work aims to extend SAM for
region-level captioning with weak supervision.

3. Method
In this section, we will introduce the model architecture
and the implementation details for our promptable region
understanding system. The model consists of three parts,
including an image encoder, a feature mixer, and decoder
heads for masks or text: (1) The image encoder extracts the
global features of the images [47]; (2) The query-based fea-
ture mixer [8] incorporates the image features and the user-
specified visual prompts (i.e., points, boxes, or masks), then
produces the region-of-interest (ROI) features; (3) The de-
coder heads map the ROI features to the modality-specific
outputs, e.g. text for region captions or mask for segmenta-
tions. In the last section, we provide implementation details
of our method. We first pre-train our model with weak su-
pervision: objection detection and panoptic segmentation.
Then the model is finetuned with the region-caption data.

3.1. Model Architecture

There are three components in the model, a ViT-based en-
coder, a transformer query-based feature mixer, and decoder
heads for different outputs of interest, e.g. text decoder.
Our model design is inspired by [35], which is a category-
agnostic promptable segmentation model that takes in user
inputs like points, boxes, or masks and outputs multiple bi-
nary masks. Apart from a ViT-based encoder [18, 47] and
a small mask decoder [11, 12], it involves a lightweight
query-based feature mixer [8] to mix both global image fea-

tures extracted by the image encoder and the user prompts.
The module is efficient as it only consists of 2M of param-
eters. Fig. 2 illustrate the model architecture.

The data used to train the SAM model is category ag-
nostic and after initial human labeling, the data are scaled
to 10M images and 1B boxes with several rounds of self-
training. Although initially, the labeled masks involve no
textual labels, they contain the semantics implicitly as the
annotators are asked to draw masks to whatever things or
stuff they recognize. Thus we hypothesize that the features
from the image encoder of SAM contain rich semantic fea-
tures beyond the lower-level segmentation tasks it is trained
on. Based on that assumption, we build our model over
the pre-trained SAM models and stack an additional feature
mixer along with a text decoder to predict texts. We fol-
low the mixer design of SAM [35] except for increasing the
number of layers in the mixer.
Image encoder. Following SAM, a ViT style image en-
coder [18] that is designed for detection [47] is adopted
in our model. Specifically, it is comprised of a plain ViT
with primary local window attention and several interleaved
global attention, which produces isotropic feature maps
with the same feature dimension.

Given image I, we have the encoder EI that extract the
global image feature I: EI(I) = I . The image features are
down-sampled for computation efficiency, as the following
feature mixer should be as lightweight as possible. Follow-
ing [35, 47], the final spatial shape and feature dimension
are 64× 64 and 256, respectively (Fig. 2).

Not that we only utilize the single level of visual features
from the last layer as in [35], compared with [19, 26, 51, 67,
68] that produce multi-scale features. However, the single-
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level feature contains sufficient information for later caption
generation, regardless of the scales of the regions.
Regional feature mixer. After the global image features
are extracted, we need to further extract the region features
denoted by the user-input visual prompts. There are two
prominent approaches to devising a region feature mixer to
attain the region-of-interest (ROI) features. The first one
leverages the ROI-align operator [26], which pools the re-
gion features from the global ones with the correspond-
ing box coordinates. The second one utilizes the attention
mechanism [82] by incorporating query tokens that fuse the
feature of interest across each attention block. We choose
the latter giving the following considerations: 1) Versatile
encoding of visual prompts. The type of visual prompts
could be either point, stroke, box, mask, or a combination
of any of them. The ROI-align operator only takes box
prompts, while in the query-based token mixer, we can en-
code the different formats of prompts with specific prompt
encoders, whose outputs are tokens that are compatible with
the latter attention blocks. 2) Progressive feature interac-
tion and fusion. The main body of the query-based fea-
ture mixer is attention blocks as in [8, 12], whose inputs
are the encoded prompt tokens, global image tokens, and
task-oriented query tokens. After several blocks of self-
attentions and cross-attentions, we can fetch the region fea-
tures at the exact position of the query tokens. Unlike the
process of the ROI-align operator, which only pools the
global image features, the query-based one can leverage
the powerful attention mechanism to extract region-specific
features that facilitate the downstream tasks, e.g. segmenta-
tion, captioning, etc.

Given the global image tokens I , and user-provided
prompts P{b,p,m} in forms of box b, point p, or mask m,
we first encode the given prompts with the corresponding
prompt encoders Ep by Ep(P{b,p,m}) = P{b,p,m}, where
P{b,p,m} is encoded prompt tokens. Next, we concatenate
the encoded prompt tokens and both the textual and mask
query tokens Q and M , and feed them with the global im-
age tokens I into the query-based feature mixer ER with N
blocks:

Ej
R(P

j−1, Qj−1,M j−1; Ij−1) = {P̂ j , Q̂j , M̂ j ; Îj}, (1)

where j = {1, 2, . . . , N} is the block indicator,
{P̂ j , Q̂j , M̂ j ; Îj} are the fused tokens after the j-th block,
{P̂ 0, Q̂0, M̂0; Î0} is the initial input tokens. We denote
{P̂N , Q̂N , M̂N ; ÎN} = {P̂ , Q̂, M̂ ; Î} as the final outputs.
The encoded query tokens Q̂ and M̂ are deemed as the ROI
tokens for captioning and segmentation, respectively, which
are delivered to the following output heads (i.e., the text
generation head and the mask prediction).

The query-based feature mixer ER is a bi-directional
transformer with stack of blocks as in [8, 12, 35, 82]. Each
block consists of one self-attention layer to fuse the sparse

tokens (i.e., the concatenated tokens of the prompt ones P
and the query ones Q), and a cross-attention layer to instill
the global image tokens I . During the encoding process
across each block, the query tokens Q can gradually gather
the task-specific information grounded by the prompts ones
P , inside the global image tokens I .
Query tokens. [35] takes query-based feature mixer as
its core component but only predicts the masks without
high-level semantic outputs like labels. We notice that [35]
can actually predict masks with good semantics even if it
is trained by a category-agnostic approach. It may be at-
tributed to the initial training data of SAM, which are la-
beled under the instruction where the annotators are asked
to draw the masks over whatever things of stuff they rec-
ognized without any semantic labels. Thus we leverage the
query tokens from [35] by stacking an additional feature
mixer ECap

R above that of [35]. Specifically, [35] possessed
its own query tokens M to mix the features for mask predic-
tion. It encoded the corresponding features with a two-layer
feature mixer ESAM

R . We add a new set of query tokens Q
for text predictions and feed it with the prompt tokens and
image tokens that are both encoded with ESAM

R into ECap
R .

Regional feature decoder. After obtaining the ROI fea-
ture, we can send it into a causal text decoder [7, 64, 80, 81]
to generate region captions. The text decoder DCap is often
a transformer decoder [82] that predict the text tokens
Tk based on the previous (predicted) text tokens T1:k−1

causally:
DCap(T1:k−1) = Tk, (2)

where k is the length of the text tokens. Since we want to
condition the prediction on the region features, we prefix
the feature token Q in front of the text tokens T . Inspired
by prompt tuning [32, 46, 106], we further prefix a set of
optimizable task tokens T to exploit task related context
(Fig. 2). The model can be optimized by minimizing
cross-entropy loss L defined on the next token by:

L =
1

NT + 1

NT +1∑
k=1

CE(Tk, p(Tk|T,Q, T0:k−1)), (3)

where p(Tk|T,Q, T1:k−1) is the predicted logits for token
Tk NT is the length until the predicted tokens and Nr is
the length of the prefix tokens. CE is cross entropy loss
with label smoothing at a strength of 0.1. T0, TNT +1 are
the begin-of-sentence (BOS) and end-of-sentence (EOS)
tokens, respectively. For the details of the mask decoder,
please refer to [35].

4. Experiments
4.1. Implementation Details

Our model is comprised of three parts: image encoder, re-
gional feature mixer, and regional feature decoder. The im-
age encoder is the pre-trained ViT-base or -large from [35].
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Table 1. Comparison with baselines. “C”: CIDEr-D [83], “M”: METEOR [5], “S”: SPICE [2], “B”: BLEU [61], “R”: ROUGE [49],

“(F)”: Fuzzy. For all metrics, the higher the better. The best, the second best, the third best scores are marked as red , orange , yellow ,
respectively. ∗: The captioners used in [86]. †: We pre-train the model for 100K steps, then finetune it on VG for 100K steps. ‡: When no
pertaining is applied, we train the model on VG for 200K steps. Thus they have similar training costs.

Method C M S B@1 B@2 B@3 B@4 R Noun Verb Noun (F) Verb (F)
SAM+BLIP-base 43.8 9.6 12.6 16.8 7.8 3.9 2.1 19.8 21.4 3.0 49.6 8.2
SAM+BLIP-large∗ 25.3 11.0 12.7 14.1 6.5 3.2 1.6 18.5 27.3 4.3 56.2 12.4
SAM+GIT-base 65.5 10.1 17.1 23.6 11.7 7.1 4.8 21.8 22.7 1.4 49.8 3.0
SAM+GIT-base-coco 67.4 11.2 17.5 24.4 12.6 7.5 4.9 23.1 25.6 2.5 52.7 5.2
SAM+GIT-base-textcaps 45.6 11.6 15.0 18.4 8.9 4.7 2.7 21.8 26.1 3.5 54.2 7.4
SAM+GIT-large∗ 68.8 10.5 17.8 24.2 12.3 7.4 5.0 22.4 24.5 1.8 51.6 3.7
SAM+GIT-large-coco 71.8 12.2 18.8 24.6 12.9 7.7 4.9 24.4 28.9 3.4 55.8 6.7
SAM+GIT-large-textcaps 59.2 12.6 17.5 20.9 10.5 6.0 3.6 23.6 29.4 3.7 56.5 7.2
SAM+BLIP2-OPT-2.7B-coco 30.4 11.3 12.0 14.4 7.1 3.6 1.9 19.3 26.7 4.7 55.0 12.1
SAM+BLIP2-OPT-2.7B∗ 59.7 11.7 16.7 19.6 9.8 5.3 3.0 22.7 26.6 4.5 53.7 9.7
SAM+BLIP2-OPT-6.7B-coco 30.4 12.2 13.1 14.7 7.3 3.8 2.0 19.9 29.7 4.7 57.8 11.7
SAM+BLIP2-OPT-6.7B 56.6 11.7 16.2 19.0 9.5 5.0 2.8 22.3 26.7 4.4 53.9 10.1
GRiT 142.2 17.2 30.5 36.0 22.1 15.2 11.2 34.5 39.5 4.3 63.3 7.2
SCA (GPT2-large, VG)‡ 148.8 17.4 31.2 38.0 23.9 16.6 12.1 35.5 41.5 4.8 65.0 7.6
SCA (LLAMA-3B, VG)‡ 149.8 17.4 31.3 38.0 23.9 16.7 12.2 35.5 41.2 4.5 64.6 7.1
SCA (GPT2-large, Pretrain+VG)† 149.8 17.5 31.4 38.2 24.1 16.8 12.2 35.7 41.7 4.8 65.1 7.5

The mask feature mixer along with mask query tokens M
and the mask decoder are from the pre-trained SAM. For the
text decoder, we leverage the pre-trained language model
such as GPT2-large [64] and OpenLLAMA-3B [14, 20, 80].
The above modules are all fixed during training. As to the
additional transformer region feature mixer to extract tex-
tual features, we scale the 2-layer one in [35] to 12 layers.
The caption query tokens Q have a length of 8 and the task
tokens T have a length of 6. We optimize the above modules
for region captioning generation. Note that only a small set
of parameters are optimized, thus the training is not only
scalable but efficient. We list the hyper-parameters in sup-
plementary. We first pre-train the model for 100K steps,
with Objects365 [72] (detection) and COCO-Panoptic [50]
(segmentation) with a sampling ratio of 10:1. Then we fine-
tune the model on Visual Genome [36] dense caption split
for another 100K steps. Meanwhile, we also directly train
the models on VG for 200K steps. For inference, we use
a beam size of 3 for text generation. Note that as only the
lightweight text feature mixer is optimized, we can switch
it during inference to generate either class labels (from per-
taining) or captions (from finetuning). We list more details
in the supplementary materials.

4.2. Evaluation Settings

Datasets. We evaluate the methods on Visual Genome
(VG) [36] captioning splits. It contains about 100K im-
ages along with around 3M regions, and each region con-
tains one textual description. Despite the large scale of re-
gions, there are a large number of repeated annotations due
to its data curation. We take the standard data split pro-

tocol [33, 89, 91], in which around 70K images are used
for training, and other 5K images are used for evaluation.
Compared with previous works [33, 89], we do not prepro-
cess the text (e.g., case conversion, remove the symbols,
etc.), as we find no performance degradation thanks to the
employment of pre-trained language models.
Metrics. We adopt the standard referring-based text simi-
larity measurements [2, 5, 49, 61, 83] used in image cap-
tioning [43, 84, 96], to evaluate the generated regional cap-
tions against the ground-truth ones. Unlike dense caption-
ing task [33, 91] which considers both localization and gen-
eration, we assume localization proposals as given inputs
and focus on region captioning. Moreover, we evaluate the
concepts learned by the models with phrase coverage rate.
We parse both sentences into phrases and then compute the
coverage score via Intersection Over Union (IoU) for both
nouns and verbs [9]. The score for each pair is either ex-
act matching or fuzzy matching, i.e. the cosine similarity
between the phrase embeddings. Finally, we average the
scores across all samples.

4.3. Comparison with other methods

We compare our methods with two kinds of baselines on the
test split of VG. The first baseline is training-free, which is
a SAM followed by an image captioner [42, 43, 84]. It is
the major algorithm in Caption Anything [86]. We evalu-
ate various open-sourced captioners; The second baseline is
the GRiT model [89], which is trained on the train split of
VG like ours. However, it contains a region generator to au-
tomatically generate region proposals, while ours requires
those from users. We directly test its captioning ability by
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Figure 3. The qualitative results. SCA simultaneously predicts masks (in red contour) and captions. From top-to-bottom, the captions are
from: SAM+Captioner { GIT-large , BLIP-large , BLIP2-OPT-2.7B } [86], GRIT [89], SCA { GPT2-large+VG , LLAMA-3B+VG ,

GPT2-large+Pretrain+VG }, and the ground truth. The bounding boxes (in red) are used to prompt the models. Zoom in for a better view.

providing ground truth boxes.

Tab. 1 demonstrates the superior results of our models.
The image captioner baselines yield the least performance.
We speculate that the image patches generated by SAM lose
the context information, and they differ from the training
distribution of the captions w.r.t. both resolution and seman-
tics. Thus it could generate captions that are either misinfor-
mative or unspecific. The second baseline, GRiT, gives the
most competitive results, but it possesses major drawbacks
in comparison with ours. 1) The full model of GRiT, in-
cluding the image encoder, region proposal net, and text de-
coder head, is optimized during training, which costs a vast
amount of training resources. Our model only optimizes the
lightweight feature mixer, which reduces the cost by less-
ening the memory consumption and bandwidth for syncing
gradients. 2) The text decoding is initialized from scratch in
GRiT, which constrains its language modeling ability due to
the limited amount of region captioning data. Whereas our

method leverages pre-trained language models by mapping
SAM’s visual features into the language embedding space.
It raises two merits: 1) As the power of language model
scales, we can observe improved performance on tests. Our
model with LLAMA-3B yields superior performance on the
VG test set. 2) Since we do not finetune the language model
to adapt new data distributions, it is possible to further im-
prove our model based on the language aspect, e.g., chat-
style interaction [53, 62]. Fig. 3 visualizes the predictions.

4.4. Ablation Study

In the early stage of experimenting, we spent less computa-
tional budgets to validate the efficiency of different design
choices. Specifically, for all models in this section, we con-
strained the budges to 8 16GB V100 GPUs with a batch size
of 8. By default, the models are trained solely on VG [36]
without data augmentation for 200K steps.
The effectiveness of weak supervision pre-training. To
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Table 2. The ablation of pretraining with weak supervision. ∗: The
model is trained solely on VG [36] for 100K steps. †: The model
is first pre-trained for 100K, and then it is fine-tuned for 100K. The
training setting for ablations is different from that of Tab. 1.

Pretrain C M S
No Pretrain∗ 127.9 15.8 27.7
COCO [50] (img. 117K, cls. 80)† 130.2 16.0 28.0
V3Det [85] (img. 183K, cls. 13K)† 130.4 16.0 28.0
O365 [72] (img. 1M, cls. 365)† 134.5 16.3 28.7

Table 3. The ablation of training settings of the feature mixer and
the text decoder. “M.”: Feature mixer, “T.D.”: Text decoder.

M. LR T.D. T.D. LR C M S

1e-4 GPT2
-large

5e-6 135.6 16.3 28.5
1e-6 134.8 16.2 28.5
5e-7 134.5 16.2 28.5
1e-7 135.6 16.4 28.8
0.0 136.0 16.5 28.9

5e-5 GPT2
-large

5e-6 129.1 15.7 27.5
1e-6 131.4 15.9 28.0
5e-7 131.2 16.0 28.0
1e-7 132.5 16.1 28.2
0.0 131.7 16.1 28.2

1e-4 GPT2

5e-6 134.1 16.2 28.4
1e-6 134.7 16.3 28.7
5e-7 134.5 16.2 28.7
1e-7 133.2 16.1 28.6
0.0 132.3 15.9 28.9

5e-5 GPT2

5e-6 131.3 16.0 28.0
1e-6 131.1 16.0 28.1
5e-7 130.6 15.9 28.1
1e-7 130.4 15.9 28.2
0.0 126.3 15.4 27.9

preliminarily validate the effectiveness of pretraining with
weak supervision. We leveraged three object detection
datasets: 1) MS COCO [50] contains about 117K images
and 80 classes; 2) V3Det [85] is a rich-semantic detection
dataset with around 183K images and 13k classes; 3) Ob-
jects365 [72] is a large-scale detection dataset with over 1M
images, 27M regions, and 365 class labels. The model was
first pre-trained for 100K steps and finetuned for another
100K without other modifications. We set another baseline
trained directly on VG for 100K steps. Tab. 2 presents that
the pretraining with concept labels can facilitate the con-
vergence of training on VG, and the larger the scale of the
images, the better the test performance. Under a similar
amount of samples, an increase in class labels can slightly
improve performance. The finding encourages us to further
enlarge the pretraining data scale in the future.

Table 4. The effect of different number of layers in the feature
mixer. Note that this is the only trainable module in our models.

# of Layers # of Params C M S
2 3.3 M 108.8 13.6 24.6
4 6.5 M 109.8 14.0 25.6
8 12.8 M 127.0 15.3 27.8
12 19.1 M 127.7 15.3 27.9
24 38.0 M 124.5 15.0 27.3

The hyper-parameters of the text decoder and the fea-
ture mixer. To determine the training recipe for the text
decoder, we experimented with two factors: 1) The size of
the text decoder; and 2) The optimization of the text de-
coder. We tried two variants of GPT2 transformer decoder
models [64], which are GPT2-large with 774M parameters
and GPT2 with 127M. They are all from the official release
which are trained on WebText dataset [64]. Given the dif-
ferent learning rates of the feature mixer, we then tested
different learning rates (i.e., 0.0, 1e-7, 5e-7, 1e-6, 5e-6) for
the text decoder.

Two conclusions can be drawn from Tab. 3. 1) The fea-
ture mixer requires a relatively large learning rate to con-
verge to good performance. 2) When the text decoder is
small (GPT2 with 127M), we need to finetune it to achieve
better results. In contrast, using a larger text decoder like
GPT2-large (774M), finetuning may impede the perfor-
mance, and fixing the decoder can yield even better scores
compared with the small one.

We chose a large text decoder without any finetuning in
this paper given the considerations of both capacity and ef-
ficiency. In this, we not only keep the knowledge inside the
language model for future improvement, but enable low-
cost training of the model.
The size of feature mixer. The additional feature mixer for
text decoding is a bi-directional transformer, which fuses
the query and prompt tokens with self-attention, and the
image tokens with cross-attention. The original one used
in [35] is a two-layer one that is highly computational-
efficient with solely 3M parameters.

To investigate how the size of the feature mixer affects
the extracted region feature, we test a different number of
layers for the additional transformer, ranging from 2 with
3M parameters to 24 with 30M parameters.

Tab. 4 demonstrates the final scores on the VG test split.
As the number of layers increases, the n-gram metrics ramp
up as well. Only until 12 layers do its performance reach the
peak, then adding more layers harms the performance. No-
ticeably, [43] used 12 layers feature mixer to extract promi-
nent features for image captioning, which has over 105M
parameters. While ours only consists of 19.4M.
The architecture of feature mixer. We experiment with
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Table 5. The ablation of feature mixer design.

Method C M S
ROI Align [26] 45.2 9.4 11.6
ROI Align + MLP [52] 82.5 12.1 19.3
SAM Query [35] 130.6 15.9 28.4
Text Query w/o SAM Tokens 136.6 16.4 29.2
Text Query w/ SAM Tokens 137.4 16.5 29.3

Table 6. The ablation of using different sizes of image encoder.

Method # of Params C M S
SAM-ViT-base 86M 130.2 16.0 28.2
SAM-ViT-large 307M 129.6 15.9 28.3
SAM-ViT-huge 632M 130.9 16.0 28.5

four major architectures, which are 1) the one with ROI-
Align operator [26], which is described in the main pa-
per; 2) the one that directly decoding the query tokens from
SAM; 3) the one that does not rely on the fused tokens from
SAM’s feature mixer (in other words, not reusing SAM’s
tokens); 4) the one that utilizes the query tokens from SAM
to decode texts. To make the ROI align one stronger, we
add an MLP stated in [52], which is a two-layer MLP with
GELU activation [28].

Tab. 5 shows that query-based mixers perform signif-
icantly better than those using ROI-align, indicating the
effectiveness of progressive feature aggregation. Directly
decoding SAM’s query token restricts the capacity of the
mixer. Incorporating additional query tokens for captioning
boosts the performance of the model. Moreover, resuing the
features of SAM further improves the captioning results.

The size of the SAM image encoder. We investigate how
different SAM encoders may affect the captioning perfor-
mance, by testing the three official encoders from [35],
which are three ViT [18] with different scale: base, large,
and huge. Surprisingly, different size of the SAM image
encoders results in similar final performance. We chose
the ViT huge as the default image encoder as it performs
slightly better among others.

The efficacy of data augmentation. We found that with
an enlarged batch size in multiple-node training, the model
experienced an overfitting problem which led to inferior
test performance. To fight against the problem, we re-
sort to strong augmentation from [21], the large-scale jitter-
ing. Tab. 7 demonstrates that using the strong augmentation
not only alleviates the overfitting problem but enhances the
model’s performance.

Table 7. The ablation of using data augmentation. “LM”: Lan-
guage model, “Aug.”: Augmentation.

LM Aug. C M S

GPT2-large
No LSJ 137.6 16.5 29.3
LSJ (1.0, 2.0) 140.2 16.7 29.9
LSJ (0.1, 2.0) 140.8 16.7 29.9

LLAMA-3B
No LSJ 137.7 16.4 29.2
LSJ (1.0, 2.0) 142.1 16.7 30.0
LSJ (0.1, 2.0) 142.6 16.8 30.1

5. Conclusions and Discussions
We preliminarily demonstrate a regional captioning system
by adapting a powerful class-agnostic segmentation model,
SAM [35], with a lightweight (typically in the order of tens
of millions) query-based feature mixer that bridges SAM
with the language model. The mixer is the only optimizable
module thus the training is both faster and scalable, as it
costs less computation, less memory usage, and less com-
munication bandwidth. To better generalize our model, we
pre-train the system with weak supervision which transfers
the general knowledge of the visual concepts beyond the
limited regional captioning data, Visual Genome (VG) [36].
We extensively validate our design choices and evaluate our
method, demonstrating its strong performance.
Limitations. 1) Wrong attribute prediction. e.g., the mod-
els could predict the wrong colors or textures; 2) Distin-
guishing similar visual concepts. e.g., the model may con-
fuse “lemon” with “orange”; 3) Alignment with mask pre-
dictions: As we do not supervise the alignment, the model
may predict mask and captions for the fore- and background
separately. The drawbacks, esp. 1) and 2), may be ad-
dressed by weak supervision and self-training [6].
Weak supervision and self-training. We only leverage
1.8M weak supervision data [50, 72] to complement the re-
gional captioning data, VG [36]. Our ablation about the
effectiveness of weak supervision shows that the scale of
images matters more than the variety of labels, which is in-
tuitive as we want the model to align and generalize as much
as visual concepts with the language models. Thus pertain-
ing the model with bigger datasets like [38] may lead to
better generalizability. Another approach to leverage image
captioning data as in [44, 111], but it requires to solve the
problem of granularity mismatching [111]. Self-training is
the ultimate goal that could scale both the data and the gen-
eralizability of the model. It demonstrates effectiveness in
image captioning [42], segmentation [35], open-vocabulary
detection [57], and text-to-image generation [6]. We believe
this work serves as a footstone towards scaling regional cap-
tioning data [6, 35, 57] in the future.
Insight of lifting SAM for regional captioning. Although
there are no semantic labels in the training data, SAM still
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implies high-level semantics that are sufficient for caption-
ing. The masks used to train SAM are labeled in a way
where annotators are asked to draw masks for every things
or stuff they recognized [35]. After several rounds of self-
training and bootstrapping the data to 1B masks, the at-
tained models possess implicit general knowledge about the
visual world. Therefore, we can align the implicit gen-
eral knowledge with natural languages to caption regions.
We believe this work sheds light on exploring the emerging
ability [88] in vision from low-level data or pre-trains.
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Olivier J. Hénaff, Jean-Baptiste Alayrac, and Andrew Zis-
serman. Three ways to improve feature alignment for open
vocabulary detection, 2023. 2

[5] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic
metric for mt evaluation with improved correlation with hu-
man judgments. In ACL Workshop, pages 65–72, 2005. 5

[6] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng
Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee,
Yufei Guo, Wesam Manassra, Prafulla Dhariwal, Casey
Chu, Yunxin Jiao, and Aditya Ramesh. Improving Image
Generation with Better Captions. OpenAI blog, 2023. 2, 8

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-

lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners. In NeurIPS, 2020.
1, 2, 4

[8] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nico-
las Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. In ECCV,
2020. 2, 3, 4

[9] David M Chan, Austin Myers, Sudheendra Vijaya-
narasimhan, David A Ross, and John Canny. Ic3: Im-
age captioning by committee consensus. arXiv preprint
arXiv:2302.01328, 2023. 5

[10] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu
Soricut. Conceptual 12M: Pushing web-scale image-text
pre-training to recognize long-tail visual concepts. In
CVPR, 2021. 2

[11] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-
illov. Per-pixel classification is not all you need for seman-
tic segmentation. In NeurIPS, 2021. 2, 3

[12] Bowen Cheng, Ishan Misra, Alexander G. Schwing,
Alexander Kirillov, and Rohit Girdhar. Masked-attention
mask transformer for universal image segmentation. In
CVPR, 2022. 2, 3, 4

[13] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari,
Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghe-
mawat, Sunipa Dev, Henryk Michalewski, Xavier Gar-
cia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Bar-
ret Zoph, Alexander Spiridonov, Ryan Sepassi, David Do-
han, Shivani Agrawal, Mark Omernick, Andrew M. Dai,
Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polo-
zov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav
Petrov, and Noah Fiedel. PaLM: Scaling language model-
ing with pathways. JMLR, 2023. 2

[14] Together Computer. RedPajama-Data: An Open Source
Recipe to Reproduce LLaMA training dataset, 2023. 5

[15] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven C. H. Hoi. InstructBLIP: Towards
general-purpose vision-language models with instruction
tuning. arXiv preprint arXiv:2305.06500, 2023. 2

[16] Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong

9



Wang, and Lu Yuan. DaViT: Dual attention vision trans-
formers. In ECCV, 2022. 2

[17] Xiaoyi Dong, Jianmin Bao, Yinglin Zheng, Ting Zhang,
Dongdong Chen, Hao Yang, Ming Zeng, Weiming Zhang,
Lu Yuan, Dong Chen, Fang Wen, and Nenghai Yu.
MaskCLIP: Masked self-distillation advances contrastive
language-image pretraining. In CVPR, 2023. 2

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An im-
age is worth 16x16 words: Transformers for image recog-
nition at scale. In ICLR, 2021. 2, 3, 8

[19] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. CenterNet: Keypoint triplets for
object detection. In ICCV, 2019. 2, 3

[20] Xinyang Geng and Hao Liu. OpenLLaMA: An Open Re-
production of LLaMA, 2023. 5

[21] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian,
Tsung-Yi Lin, Ekin D. Cubuk, Quoc V. Le, and Barret
Zoph. Simple copy-paste is a strong data augmentation
method for instance segmentation. In CVPR, 2021. 8

[22] Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Scal-
ing open-vocabulary image segmentation with image-level
labels. In ECCV, 2022. 2

[23] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. Rich feature hierarchies for accurate object de-
tection and semantic segmentation. In CVPR, 2014. 2

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016. 1

[25] L. Grady. Random Walks for Image Segmentation. TPAMI,
28(11):1768–1783, 2006. 2

[26] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask R-CNN. TPMAI, 2020. 2, 3, 4, 8

[27] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross B. Girshick. Masked autoencoders are
scalable vision learners. In CVPR, 2022. 2

[28] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 8

[29] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de
Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, Tom Hennigan, Eric Noland, Katie Millican, George
van den Driessche, Bogdan Damoc, Aurelia Guy, Simon
Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae,
Oriol Vinyals, and Laurent Sifre. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022. 2

[30] MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratud-
din, and Hamid Laga. A comprehensive survey of deep
learning for image captioning. ACMCS, 51(6):1–36, 2019.
1

[31] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. Scaling up visual and vision-language
representation learning with noisy text supervision. In
ICML, 2021. 1, 2

[32] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge J. Belongie, Bharath Hariharan, and Ser-Nam Lim.
Visual prompt tuning. In ECCV, 2022. 4

[33] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Dense-
Cap: Fully convolutional localization networks for dense
captioning. In CVPR, 2016. 1, 2, 5

[34] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic
alignments for generating image descriptions. TPMAI,
2017. 1, 2

[35] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
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