
Segment and Caption Anything

Supplementary Material

A. Implementation Details
Tab. 1 presents the implementation details of our method.
Note that as we scale the batch size, the learning rate is
scaled linearly as well. However, during our experiments,
we found that there is a maximum threshold of 4e-4. Scal-
ing the learning rate over 4e-4 leads to underfitting of the
data and degradation of performance. Since we only op-
timize 19.4M parameters, it costs less computation, less
memory usage, and less communication bandwidth, result-
ing in both fast and scalable training. We attribute 200K
steps of training. For only VG [11] dataset, we train the
models for the full 200K steps. Otherwise, we first pre-
train the models for 100K then finetune them on VG for
another 100K steps. We use 64 V100 GPUs to pre-train and
32 V100 GPUs to finetune.

B. Leveraging Other Image Features
We experiment with image features from other encoders [3–
5, 7, 15, 17]. The training configuration is the same as that
of the ablations, which is 8 V100 GPUs and direct decod-
ing when inference. We use the features from the second
last layer [13]. We also try to optimize the feature mixer
of SAM [9] for the seek of improved performance. The
results can be found in Tab. 2. The models with other
image encoders perform drastically worse than those with
SAM image encoders, indicating the superiority of the fea-
ture space of SAM. Please note that the image encoders are
fixed, other methods like [20, 21, 24] need to fine-tune their
image encoders, which increases the computation burden.
While ours only fine-tune the text feature mixer. It not only
achieves better performance but is cheaper for training at
scale.

C. The Results of Referring VLLM
The building of referring Vision Large Language Models
(VLLMs) evolves quickly [20, 24]. Here we compare our
models with these referring VLLMs in Tab. 3.

D. Dataset Statistics
Tab. 4 includes the statistics of the datasets used for training.

E. Evaluation of Referring Expression Gener-
ation

Referring Expression Generation (REG) [2, 22] is closely
related to regional image captioning. Regional image cap-
tioning is about depicting the regions informatively. The

Table 1. The implementation details. ∗: As the batch size
ramps up, the image epoch and region epochs are subjected to
be changed, and the learning rate will be scaled linearly w.r.t. the
batch size.

Optimization

Optimizer AdamW
(0.9, 0.999)

LR ∗ 0.0001
LR Decay Ratio 0
LR Decay cosine
Weight Decay 0.0001
Warmup ratio 0.3333
Warmup steps 200
Gradient Clipping 1.0

Data Epoch∗

Batch Size∗ 8
# Reg / Img 16
Steps 200000
# Img 77398
# Reg 3684063
Img Epoch∗ 20.67
Reg Epoch∗ 6.95
GPU Type V100-16GB
# GPUs 8

Model Details

Input

a) 1024x1024
Long side: 1024
Short side: padding
b) Large Scale Jitter
c) Horizontal Flip

Loss a) Cross Entropy Loss
b) Label Smooth (0.1)

Text Decoder a) GPT2-large
b) Open LLAMA 3B v2

# Query Tokens 8
# Mixer Layers 12
# Task Tokens 6
Opt. Module Text Feat. Mixer
# Opt. Params 19.4 M

goal of REG is to output descriptions that discriminate the
unique object of interest, which does not require faithfully
regional descriptions. Fig. 1 illustrates the difference with
two examples [2]. Despite of the textual style gaps between
the two tasks, we present the zero-shot results of REG with
our trained models in Tab. 5.
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Table 2. Comparison of using different image encoders. “C”:
CIDEr-D, “M”: Meteror.

Image Encoder C M
vit large patch14 clip 336.openai 67.3 10.2
vit large patch14 clip 224.datacompxl 59.0 9.3
eva02 large patch14 clip 336.merged2b 53.9 8.8
vit large patch14 reg4 dinov2.lvd142m 76.4 11.2
vit large patch16 224.mae 59.6 9.4
Add optimization of sam feature mixer
vit large patch14 clip 336.openai 66.7 10.1
vit large patch14 clip 224.datacompxl 60.3 9.5
eva02 large patch14 clip 336.merged2b 54.2 8.8
vit large patch14 reg4 dinov2.lvd142m 76.1 11.1
vit large patch16 224.mae 59.2 9.4
SAM
SAM-ViT-base 130.2 16.0
SAM-ViT-large 129.6 15.9
SAM-ViT-huge 130.9 16.0

Table 3. Comparison with referring Vision Large Language Mod-
els (VLLMs). “M”: Meteror, “C”: CIDEr-D. †: The scores are
from the papers. ‡: We reproduced the result with “GPT4RoI-
7B-delta-V0” from https://github.com/jshilong/
GPT4RoI. The best, the second best, the third best scores are
marked as red , orange , yellow , respectively.

Method M C
ASM [20] (Zero-shot)† 12.6 44.2
ASM (Finetuned)† 18.0 145.1
GPT4RoI [24] (7B)† 17.4 145.2
GPT4RoI (13B)† 17.6 146.8
GPT4RoI (7B)‡ 16.4 122.3
SCA (GPT2-large, VG) 17.4 148.8
SCA (LLAMA-3B, VG) 17.4 149.8
SCA (GPT2-large, Pretrain+VG) 17.5 149.8

F. Compared with Image Captioning: The Dis-
tribution of Automatic Evaluation Metrics
and the Pity of the Metrics

We notice that the convention metrics based on n-gram hold
a positive skewness distribution. Although some predic-
tions perfectly match the ground truths, the overall dis-
tribution is still long-tailed. We plot the distributions of
CIDER-D scores for different methods in Figs. 2a to 2c. For
ours and GRiT, the distributions are similar. Whereas more
scores are allocated around zero in the SAM-Captioner
baseline, leading to poor a average CIDER-D score. We ad-
ditionally showcase the distribution of CIDER-D on the im-
age caption dataset COCO in Fig. 2d, which is predicted by
SOTA image captioner [18] , the distribution is still skew-

Figure 1. The difference between image captioning, regional im-
age captioning, and referring expression generation. The figures
are from [2].

(a) Ours, VG Region Cap. (b) GRiT, VG Region Cap.

(c) SAM-Cap, VG Region Cap. (d) GIT, COCO Image Cap.

Figure 2. Distribution of CIDEr scores. From left to right is: ours
on the VG region caption, SAM-Cap (baseline), GRiT on the VG
region caption, and GIT on the COCO image caption. Note that
the scales of the y-axis for each figure is different.

ness but is more centered compared with that of region cap-
tioning. For the majority of captions, their CIDER-D score
is zero, which does not mean the predictions are wrong, it
only indicates there is no n-gram matching. e.g., The pair
“the windshield of a bus” and “large front window on a
bus”” gives zero CIDER-D. This finding intrigues us to pur-
sue more robust and comprehensive metrics [8, 10].
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Table 4. The statistics of region-level understanding datasets used for training.

dataset type total samples total regions total sents total tokens total words

COCO[12] Region recognition 117,266 860,001 860,001 1,275,513 942,822
V3Det [19] Region recognition 183,348 1,357,351 1,357,351 3,984,388 2,126,318
Objects365 [16] Region recognition 1,742,289 25,407,598 25,407,598 49,264,696 32,341,116

Visual Genome [11] Region captioning 77,398 3,684,063 3,684,063 21,392,494 19,740,221
RefCOCOg [22] Referring Expression 24,698 48,599 92,671 834,305 785,259

Table 5. The zero-shot performance on the Referring Expression Generation (REG) task. “M”: Meteror, “C”: CIDEr-D. ∗: “k” means the
number of examples in the prompt. †: The scores are from the papers.

Method
RefCOCOg RefCOCO+ RefCOCO

val testA testB testA testB
M C M C M C M C M C

separate train/test
Visdif [22]† 14.5 - 14.2 - 13.5 - 18.5 - 24.7 -
SLR [23]† 15.9 66.2 21.3 52.0 21.5 73.5 29.6 77.5 34.0 132.0
zero-shot
Kosmos-2 [14]† 12.2 60.3 - - - - - - - -
Kosmos-2 (k=2)∗† 13.8 62.2 - - - - - - - -
Kosmos-2 (k=4)∗† 14.1 62.2 - - - - - - - -
ASM [20]† 13.6 41.9 - - - - - - - -
GRiT [21] 15.2 71.6 - - - - - - - -
SCA (GPT2-large, Pretrain+VG) 15.4 71.9 21.7 29.2 20.4 57.2 20.4 27.0 20.2 66.4
SCA (GPT2-large, VG) 15.3 70.5 21.7 30.2 20.1 56.6 20.5 27.7 20.1 66.7
SCA (LLAMA-3B, VG) 15.6 74.0 22.0 30.0 20.2 56.1 20.7 27.3 20.3 65.3

G. Additional Visualizations
We exhibit more qualitative results in Figs. 3 and 4.

H. Failure Case Analysis and Limitations
Our model can make wrong predictions in the terms of fol-
lowing:
1. Wrong attribute prediction (Fig. 5). e.g., the models

could predict the wrong colors or textures;
2. Distinguishing similar visual concepts (Fig. 6). e.g., the

model may confuse “lemon” with “orange”;
3. Alignment with mask predictions (Fig. 7): As we do not

supervise the alignment, the model may predict mask
and captions for the fore- and background separately.

We believe these drawbacks, esp. 1) and 2), may be ad-
dressed by weak supervision and self-training [1].

I. The Formal Definition of the Feature Mixers
Here we provide a more formalized descriptions for each
variants:
1) ROI-Align operator [6]: Given image feature I , we ex-
tract the regional feature R = π(I), where π is the ROI-
Align operator. Then we project the regional feature R̂ =

Proj(R), where Proj is the project function which can be a
linear layer or a two-layer MLP with GELU activation [13].
The architecture is changed in this setting, while for the rest
three, The architectures are not changed.
2) Directly decoding the mask query tokens from SAM: We
remove the textual query token Q. The query-based feature
mixer ER becomes:

Ej
R(P

j−1,M j−1; Ij−1) = {P̂ j , M̂ j ; Îj}. (1)

Then we feed the mixed mask query token M̂ into the text
decoder.
3) Learn textual query tokens without SAM’s query tokens:
The prompt and mask query tokens (i.e., P and M ) sent
to the textual feature mixer are not encoded by the SAM
feature mixer.
4) Learn textual query tokens with SAM’s query tokens:
The prompt and mask query tokens (i.e., P and M ) sent to
the textual feature mixer are encoded by the SAM feature
mixer.

J. Analysis of the “Verb (Fuzzy)“ Metrics
For exact matching, SCA achieves the highest results of 4.8.
While for fuzzy matching (the mean cosine similarity be-
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Figure 3. More visualization of the predictions. From top-to-bottom, the captions are from: SCA { GPT2-large+VG , LLAMA-3B+VG ,

GPT2-large+Pretrain+VG }, and the ground truth.

tween phrase embeddings), our method underperforms as it
predicts noun phrases without verbs. Conversely, baseline
models often predict verbs, and even incorrect verbs can
have scores about 0.2-0.6 (Fig. 8).

K. The Implementation Details about the Base-
line

We build the baseline models, SAM + Image Captioner as
follows: 1) use input prompts to get the mask with the high-
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Figure 4. More visualization of the predictions. From top-to-bottom, the captions are from: SCA { GPT2-large+VG , LLAMA-3B+VG ,

GPT2-large+Pretrain+VG }, and the ground truth.
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Figure 5. The predictions with wrong attributes.

Figure 6. The predictions with wrong entities. From top-to-bottom, the captions are from: SCA { GPT2-large+VG , LLAMA-3B+VG ,

GPT2-large+Pretrain+VG }, and the ground truth.

est confidence score; 2) crop the image patch by the tightest
box that covers the selected mask, and feed it the to the
image captioner. We report the performance of the base-
lines with V-CoT [86] in Tab. 6. The prediction fails at
the first “recognition” step due to indistinguishable region
crops even for humans.

Table 6. Comparison of using V-CoT [86] or not.
Method C M S B@1 B@2 B@3 B@4 R Noun Verb Noun (F) Verb (F)
w/o V-CoT 59.7 11.7 16.7 19.6 9.8 5.3 3.0 22.7 26.6 4.5 53.7 9.7
w/ V-CoT 3.4 1.2 1.1 1.2 0.4 0.2 0.1 3.1 1.6 0.1 7.3 0.3

L. The Analysis of Different Type of Prompts

Our method supports both point and box prompts as we re-
use SAM’s feature mixer. However, since the dataset exclu-
sively provides ground-truth boxes, we introduce pseudo-
point prompts for inference derived through three strategies:
1) the box’s center point (CPB), 2) a random point within
the box (RPB), and 3) a random point within the highest-
confidence mask predicted by SAM (RPM). Using points
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Figure 7. The predictions that are unaligned with the masks. From top-to-bottom, the captions are from: SCA { GPT2-large+VG ,

LLAMA-3B+VG , GPT2-large+Pretrain+VG }, and the ground truth.

(a) Ours (b) SAM-Cap + BLIP2-OPT-2.8B

(c) SAM-Cap + BLIP2-OPT-6.7B

Figure 8. Distribution of “Verb (Fuzzy)” scores on the VG region
caption. From left to right is: ours, SAM-Cap (baseline) + BLIP2-
OPT-2.8B, and SAM-Cap (baseline) + BLIP2-OPT-6.7B. Note the
difference of the pdf ranging from 0.2 to 0.6 in x-axis. Zoom-in
for a clear view.

prompt performs worse due to its absence during training

Table 7. Comparison of different types of prompts.
Method C M S B@1 B@2 B@3 B@4 R Noun Verb Noun (F) Verb (F)
Box 149.8 17.5 31.4 38.2 24.1 16.8 12.2 35.7 41.7 4.8 65.1 7.5
CPB 86.8 12.7 22.5 29.1 15.6 9.6 6.1 26.5 29.6 3.3 56.1 5.9
RPB 68.3 10.7 18.0 25.2 12.9 7.7 4.8 23.2 23.7 2.3 50.5 4.3
RPM 90.5 13.2 23.6 29.8 16.1 9.9 6.3 27.1 30.9 3.4 57.5 5.9

(Tab. 7).
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